
Android and EAS



Development
● Linux Kernel Mailing List is (of course) where upstream discussions happen

○ This is preferred path (upstream -> backport to AOSP)

● eas-dev mailing list is channel for “generic” EAS discussions 
(https://lists.linaro.org/pipermail/eas-dev/)

● Android targeted open development happens on AOSP gerrit:
○ Anyone interested in proposing improvements is welcome to post patches!
○ Use of hashtags/topics for groups of changes helps navigate changes, examples:

■ https://android-review.googlesource.com/#/q/hashtag:"eas_1.4_preview"
■ https://android-review.googlesource.com/#/q/topic:schedutil-walt 

○ Relevant patches accepted upstream are backported, discussed on gerrit and merged in 
Android kernel/common as needed (one goal is to reduce delta with upstream)

○ Patches submitted must be tested for power/perf
■ Ideally the patch should specify what testing was done in comments
■ If not “standard” tests like hackbench add to the gerrit comments

https://lists.linaro.org/pipermail/eas-dev/
https://android-review.googlesource.com/#/q/hashtag:%22eas_1.4_preview
https://android-review.googlesource.com/#/q/topic:schedutil-walt


Validation
● Interactivity:

○ UIBench (in AOSP)
○ SystemUI (in AOSP)

● Energy focused:
○ In particular loads that run for long time, for instance: YouTube, Camera 

● Throughput:
○ Binder throughput test (in AOSP)

● Tools:
○ LISA (includes synthetic support with rt-app)
○ Scheduler workloads micro-conference

● Future validation
○ Jank tests for real world apps (Gmail, YouTube) ?
○ Running hackbench / unixbench on x86 to make sure patches upstream ready (?)
○ Boot time validation - using boottime validation tools



What did get merged upstream (w.r.t. last year) ?
● Capacity Awareness

○ “... performance on systems with asymmetric compute capacities …”
○ https://marc.info/?l=linux-kernel&m=147645255724470

● DT bindings (capacity-dmips-mhz)
○ https://marc.info/?l=linux-kernel&m=147671927313798&w=2

● Refactoring of topology code
○ DT bindings parsing added quite a bit of arm/arm64 duplicated code, needed to fix that
○ https://marc.info/?l=linux-kernel&m=149625018223002&w=2

● PELT fixes (quite a lot :)
○ Propagation of signals across group levels
○ Task migrations across CPUs

● schedutil fixes/improvements
○ iowait_boost
○ remote callbacks
○ Timing reference for stale util contribution

https://marc.info/?l=linux-kernel&m=147645255724470
https://marc.info/?l=linux-kernel&m=147671927313798&w=2
https://marc.info/?l=linux-kernel&m=149625018223002&w=2


What is in flight ?
● CPU/Frequency Invariance Engine

○ make use of capacity-dmips-mhz and actual clock frequency to scale task’s utilization
○ https://marc.info/?l=linux-kernel&m=150367155611291&w=2

● Add utilization clamping to the CPU controller (AKA Schedtune v4)
○ https://marc.info/?l=linux-kernel&m=150359816825787&w=2

● UTIL_EST
○ “improve some PELT behaviors to make it a better fit for the description of tasks which are 

common in embedded mobile use-cases”
○ https://marc.info/?l=linux-kernel&m=150365643406736&w=2

● Wakeup widening based on wake_q length
○ https://patchwork.kernel.org/patch/9895261/

https://marc.info/?l=linux-kernel&m=150367155611291&w=2
https://marc.info/?l=linux-kernel&m=150359816825787&w=2
https://marc.info/?l=linux-kernel&m=150365643406736&w=2
https://patchwork.kernel.org/patch/9895261/


What is in flight ? (cont.)
● SCHED_DEADLINE CPU/freq invariance and schedutil frequency selection

○ https://marc.info/?l=linux-kernel&m=149924523628277&w=2

● Wakeup & load balance fixes discovered while analysing benchmark 
response

○ Improve utilization on big.LITTLE: https://patchwork.kernel.org/patch/9885833/
○ Misc wakeup fixes:

■ find_idlest_group fixes https://lkml.org/lkml/2017/8/31/378
■ Fix for missing util sync: https://patchwork.kernel.org/patch/9876769/

● Sync flag proposal
○ Improve binder throughput test results by ~20%
○ Link: https://patchwork.kernel.org/patch/9923643/

● Skip cpufreq update on last DEQUEUE_SLEEP:
○ https://patchwork.kernel.org/patch/9910019/

https://marc.info/?l=linux-kernel&m=149924523628277&w=2
https://patchwork.kernel.org/patch/9885833/
https://lkml.org/lkml/2017/8/31/378
https://patchwork.kernel.org/patch/9876769/
https://patchwork.kernel.org/patch/9923643/
https://patchwork.kernel.org/patch/9910019/


● Already in AOSP
○ Energy model/awareness
○ Misfit tasks
○ No HZ signals updates (partially in AOSP)
○ Thermal capping Awareness in the scheduler 

● Energy Model
○ Simplification by removing cluster/idle bits?
○ Awareness by the scheduler (use of energy_diff)

● Non-global overutilized
○ Is posted in eas-dev

● RT
○ PELT for RT-rq basis posted on LKML
○ Capacity awareness?

Ideas on Future Improvements



Align with mainline (from a kernel/common POV)
Goal is to keep AOSP kernel/common and Linux master (scheduler, cpufreq) as 
close as possible

✓ schedutil used by default
✓ capacity awareness backport
✓ PELT fixes/changes (partially)
✕ deprecate/remove schedfreq
✕ WALT (currently comparing it with PELT) 
✕ Schedtune
✕ find_best_target()
✕ Energy model/awareness



Runtime/conf visible changes w.r.t. last year
● is_big_little is gone
● schedutil (instead of schedfreq)
● ...



Questions?



Backup Slides
● Schedtune v4
● UTIL_EST
● Find_best_target
● DEADLINE


